A Critical Characteristic in the Transverse Galloping Pattern

Transverse gallop is a common gait used by a large number of quadrupeds. This paper employs the simplified dimensionless quadrupedal model to discuss the underlying mechanism of the transverse galloping pattern. The model is studied at different running speeds and different values of leg stiffness,...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaohui Wei, Yongjun Long, Chunlei Wang, Shigang Wang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Applied Bionics and Biomechanics
Online Access:http://dx.doi.org/10.1155/2015/631354
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transverse gallop is a common gait used by a large number of quadrupeds. This paper employs the simplified dimensionless quadrupedal model to discuss the underlying mechanism of the transverse galloping pattern. The model is studied at different running speeds and different values of leg stiffness, respectively. If the horizontal running speed reaches up to a critical value at a fixed leg stiffness, or if the leg stiffness reaches up to a critical value at a fixed horizontal speed, a key property would emerge which greatly reduces the overall mechanical forces of the dynamic system in a proper range of initial pitch angular velocities. Besides, for each horizontal speed, there is an optimal stiffness of legs that can reduce both the mechanical loads and the metabolic cost of transport. Furthermore, different body proportions and landing distance lags of a pair of legs are studied in the transverse gallop. We find that quadrupeds with longer length of legs compared with the length of the body are more suitable to employ the transverse galloping pattern, and the landing distance lag of a pair of legs could reduce the cost of transport and the locomotion frequency.
ISSN:1176-2322
1754-2103