Remarks on Almost Cosymplectic 3-Manifolds with RICCI Operators
Let M be an almost cosymplectic 3-h-a-manifold. In this paper, we prove that the Ricci operator of M is transversely Killing if and only if M is locally isometric to a product space of an open interval and a surface of constant Gauss curvature, or a unimodular Lie group equipped with a left invarian...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2020/4172197 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let M be an almost cosymplectic 3-h-a-manifold. In this paper, we prove that the Ricci operator of M is transversely Killing if and only if M is locally isometric to a product space of an open interval and a surface of constant Gauss curvature, or a unimodular Lie group equipped with a left invariant almost cosymplectic structure. Some corollaries of this result and some examples illustrating main results are given. |
---|---|
ISSN: | 2314-4629 2314-4785 |