Classification of Teleseismic Shear Wave Splitting Measurements: A Convolutional Neural Network Approach
Abstract Shear wave splitting (SWS) analysis is widely used to provide critical constraints on crustal and mantle structure and dynamic models. In order to obtain reliable splitting measurements, an essential step is to visually verify all the measurements to reject problematic measurements, a task...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-06-01
|
Series: | Geophysical Research Letters |
Subjects: | |
Online Access: | https://doi.org/10.1029/2021GL097101 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Shear wave splitting (SWS) analysis is widely used to provide critical constraints on crustal and mantle structure and dynamic models. In order to obtain reliable splitting measurements, an essential step is to visually verify all the measurements to reject problematic measurements, a task that is increasingly time consuming due to the exponential increase in the amount of data. In this study, we utilized a convolutional neural network (CNN) based method to automatically select reliable SWS measurements. The CNN was trained by human‐verified teleseismic SWS measurements and tested using synthetic SWS measurements. Application of the trained CNN to broadband seismic data recorded in south central Alaska reveals that CNN classifies 97.0% of human selected measurements as acceptable, and revealed ∼30% additional measurements. To our knowledge, this is the first study to systematically explore the potential of a machine‐learning based technique to assist with SWS analysis. |
---|---|
ISSN: | 0094-8276 1944-8007 |