New Cardiovascular Risk Biomarkers in Rheumatoid Arthritis: Implications and Clinical Utility—A Narrative Review
Rheumatoid arthritis (RA) is a chronic autoimmune disease that not only causes joint inflammation but also significantly increases the risk of cardiovascular disease (CVD), leading to a higher morbidity and mortality. RA patients face an accelerated progression of atherosclerosis, attributed to both...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Biomedicines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-9059/13/4/870 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Rheumatoid arthritis (RA) is a chronic autoimmune disease that not only causes joint inflammation but also significantly increases the risk of cardiovascular disease (CVD), leading to a higher morbidity and mortality. RA patients face an accelerated progression of atherosclerosis, attributed to both traditional cardiovascular risk factors and systemic inflammation. This review focuses on emerging biomarkers for cardiovascular risk assessment in RA, aiming to enhance early detection and treatment strategies. Specifically, we examine the roles of interleukin-32 (IL-32), Dickkopf-1 (DKK-1), galectin-3 (Gal-3), catestatin (CST), and fetuin-A (Fet-A) as potential markers for CVD in this patient population. IL-32, a proinflammatory cytokine, is elevated in RA patients and plays a significant role in inflammation and endothelial dysfunction, both of which contribute to atherosclerosis. DKK-1, a Wnt signaling pathway inhibitor, has been associated with both synovial inflammation and the development of atherosclerotic plaques. Elevated DKK-1 levels have been linked to an increased CV mortality and could serve as a marker for CVD progression in RA. Gal-3 is involved in immune modulation and fibrosis, with elevated levels in RA patients correlating with disease activity and cardiovascular outcomes. Catestatin, a peptide derived from chromogranin A, has protective anti-inflammatory and antioxidative properties, though its role in RA-related CVD remains under investigation. Finally, Fet-A, a glycoprotein involved in vascular calcification, shows potential as a biomarker for CV events in RA, though data on its role remain conflicting. These biomarkers provide deeper insights into the pathophysiology of RA and its cardiovascular comorbidities. Although some biomarkers show promise in improving CV risk stratification, further large-scale studies are required to validate their clinical utility. Currently, these biomarkers are in the research phase and are not yet implemented in standard care. Identifying and incorporating these biomarkers into routine clinical practice could lead to the better management of cardiovascular risk in RA patients, thus improving outcomes in this high-risk population. This review highlights the importance of continued research to establish reliable biomarkers that can aid in both diagnosis and the development of targeted therapies for cardiovascular complications in RA. |
|---|---|
| ISSN: | 2227-9059 |