Mitigating Quantization Errors Due to Activation Spikes in Gated Linear Unit-Based Large Language Models
Modern large language models (LLMs) achieve state-of-the-art performance through architectural advancements but require high computational costs for inference. Post-training quantization is a widely adopted approach to reduce these costs by quantizing weights and activations to lower precision, such...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Future Internet |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1999-5903/17/4/185 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|