Rolling Bearing Fault Diagnostic Method Based on VMD-AR Model and Random Forest Classifier

Targeting the nonstationary and non-Gaussian characteristics of vibration signal from fault rolling bearing, this paper proposes a fault feature extraction method based on variational mode decomposition (VMD) and autoregressive (AR) model parameters. Firstly, VMD is applied to decompose vibration si...

Full description

Saved in:
Bibliographic Details
Main Authors: Te Han, Dongxiang Jiang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2016/5132046
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Targeting the nonstationary and non-Gaussian characteristics of vibration signal from fault rolling bearing, this paper proposes a fault feature extraction method based on variational mode decomposition (VMD) and autoregressive (AR) model parameters. Firstly, VMD is applied to decompose vibration signals and a series of stationary component signals can be obtained. Secondly, AR model is established for each component mode. Thirdly, the parameters and remnant of AR model served as fault characteristic vectors. Finally, a novel random forest (RF) classifier is put forward for pattern recognition in the field of rolling bearing fault diagnosis. The validity and superiority of proposed method are verified by an experimental dataset. Analysis results show that this method based on VMD-AR model can extract fault features accurately and RF classifier has been proved to outperform comparative classifiers.
ISSN:1070-9622
1875-9203