Determination of the Degree of Degradation of Frying Rapeseed Oil Using Fourier-Transform Infrared Spectroscopy Combined with Partial Least-Squares Regression

This rapid method for determining the degree of degradation of frying rapeseed oils uses Fourier-transform infrared (FTIR) spectroscopy combined with partial least-squares (PLS) regression. One hundred and fifty-six frying oil samples that degraded to different degrees by frying potatoes were scanne...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie Yu Chen, Han Zhang, Jinkui Ma, Tomohiro Tuchiya, Yelian Miao
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:International Journal of Analytical Chemistry
Online Access:http://dx.doi.org/10.1155/2015/185367
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This rapid method for determining the degree of degradation of frying rapeseed oils uses Fourier-transform infrared (FTIR) spectroscopy combined with partial least-squares (PLS) regression. One hundred and fifty-six frying oil samples that degraded to different degrees by frying potatoes were scanned by an FTIR spectrometer using attenuated total reflectance (ATR). PLS regression with full cross validation was used for the prediction of acid value (AV) and total polar compounds (TPC) based on raw, first, and second derivative FTIR spectra (4000–650 cm−1). The precise calibration model based on the second derivative FTIR spectra shows that the coefficients of determination for calibration (R2) and standard errors of cross validation (SECV) were 0.99 and 0.16 mg KOH/g and 0.98 and 1.17% for AV and TPC, respectively. The accuracy of the calibration model, tested using the validation set, yielded standard errors of prediction (SEP) of 0.16 mg KOH/g and 1.10% for AV and TPC, respectively. Therefore, the degradation of frying oils can be accurately measured using FTIR spectroscopy combined with PLS regression.
ISSN:1687-8760
1687-8779