From Anatase TiO<sub>2</sub> Nano-Cuboids to Nano-Bipyramids: Influence of Particle Shape on the TiO<sub>2</sub> Photocatalytic Degradation of Emerging Contaminants in Contrasted Water Matrices
Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This researc...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/30/2/424 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO<sub>2</sub> NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices. The size and shape of the nano-cuboids were accurately controlled during synthesis to assess their impact on photoactivity and selectivity. Regarding total organic carbon removal using TiO<sub>2</sub> nano-cuboids in basic environments, the results were particularly remarkable. TiO<sub>2</sub> nano-cuboids and truncated bipyramids synthesized in the 200–250 °C temperature range showed an enhanced photocatalytic efficiency when compared to alternative formulations. Diclofenac, methomyl, and phenol were fully mineralized from ultrapure water and basic stormwater. The TiO<sub>2</sub> nano-cuboids/nano-bipyramids demonstrated better selectivity and photoactivity in comparison to irregular TiO<sub>2</sub> nanoparticles. The differences in photoactivity and selectivity are explained in terms of charge carrier separation and trapping on the different crystal facets. Their performance demonstrates their potential as sustainable materials for the photodegradation of emerging pollutants in various water matrices. |
---|---|
ISSN: | 1420-3049 |