Cercus Electric Stimulation Enables Cockroach with Trajectory Control and Spatial Cognition Training

Cyborg insects are highly adaptable for detection and recognition assignments, achieved through the electrical stimulation of multiple organs and nerves to control their locomotion. However, it remains unclear whether these control strategies can promote memory formation in insects, thereby facilita...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Yu, Jieliang Zhao, Yufan Song, Zhiyun Ma, Zhong Liu, Lulu Liang, Mengdi Xu, Wenzhong Wang, Shaoze Yan
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2025-01-01
Series:Cyborg and Bionic Systems
Online Access:https://spj.science.org/doi/10.34133/cbsystems.0154
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cyborg insects are highly adaptable for detection and recognition assignments, achieved through the electrical stimulation of multiple organs and nerves to control their locomotion. However, it remains unclear whether these control strategies can promote memory formation in insects, thereby facilitating their training for recognition assignments. In this study, we employed a steering control strategy for cyborg insects in operant learning training of cockroaches in a T-maze. Remarkably, cockroaches developed a preference for specific maze channels after only five consecutive sessions of unilateral cercus electrical stimulation and steering behavior induction, achieving a memory score of 83.5%, outperforming traditional punishing training schemes. The experimental results confirmed the effectiveness of electrical stimulation on the cercus in improving the spatial cognition of cockroaches by inducing them to make specific choices in the maze. Our study revealed that the artificial locomotion control strategy can not only prompt insects to execute predetermined locomotion but also facilitate the formation of preferential memory for specific trajectories. Overall, our study highlights the electrical stimulation of sensory organs as a robust and efficient training protocol for spatial recognition learning in insects.
ISSN:2692-7632