A hybrid unsupervised machine learning model with spectral clustering and semi-supervised support vector machine for credit risk assessment.
In credit risk assessment, unsupervised classification techniques can be introduced to reduce human resource expenses and expedite decision-making. Despite the efficacy of unsupervised learning methods in handling unlabeled datasets, their performance remains limited owing to challenges such as imba...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2025-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0316557 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|