Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum
We present the space of functions of bounded κφ-variation in the sense of Riesz-Korenblum, denoted by κBVφ[a,b], which is a combination of the notions of bounded φ-variation in the sense of Riesz and bounded κ-variation in the sense of Korenblum. Moreover, we prove that the space generated by this c...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2013/718507 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560347879309312 |
---|---|
author | Mariela Castillo Sergio Rivas María Sanoja Iván Zea |
author_facet | Mariela Castillo Sergio Rivas María Sanoja Iván Zea |
author_sort | Mariela Castillo |
collection | DOAJ |
description | We present the space of functions of bounded κφ-variation in the sense of Riesz-Korenblum, denoted by κBVφ[a,b], which is a combination of the notions of bounded φ-variation in the sense of Riesz and bounded κ-variation in the sense of Korenblum. Moreover, we prove that the space generated by this class of functions is a Banach space with a given norm and we prove that the uniformly bounded composition operator satisfies Matkowski's weak condition. |
format | Article |
id | doaj-art-cffd1439667e44f0956d2b40c8fd63f0 |
institution | Kabale University |
issn | 0972-6802 1758-4965 |
language | English |
publishDate | 2013-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces and Applications |
spelling | doaj-art-cffd1439667e44f0956d2b40c8fd63f02025-02-03T01:27:51ZengWileyJournal of Function Spaces and Applications0972-68021758-49652013-01-01201310.1155/2013/718507718507Functions of Bounded κφ-Variation in the Sense of Riesz-KorenblumMariela Castillo0Sergio Rivas1María Sanoja2Iván Zea3Escuela de Matemática, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1050, VenezuelaÁrea de Matemática, Universidad Nacional Abierta, San Bernandino, Caracas 1010, VenezuelaEscuela de Matemática, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1050, VenezuelaEscuela de Matemática, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1050, VenezuelaWe present the space of functions of bounded κφ-variation in the sense of Riesz-Korenblum, denoted by κBVφ[a,b], which is a combination of the notions of bounded φ-variation in the sense of Riesz and bounded κ-variation in the sense of Korenblum. Moreover, we prove that the space generated by this class of functions is a Banach space with a given norm and we prove that the uniformly bounded composition operator satisfies Matkowski's weak condition.http://dx.doi.org/10.1155/2013/718507 |
spellingShingle | Mariela Castillo Sergio Rivas María Sanoja Iván Zea Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum Journal of Function Spaces and Applications |
title | Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum |
title_full | Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum |
title_fullStr | Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum |
title_full_unstemmed | Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum |
title_short | Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum |
title_sort | functions of bounded κφ variation in the sense of riesz korenblum |
url | http://dx.doi.org/10.1155/2013/718507 |
work_keys_str_mv | AT marielacastillo functionsofboundedkphvariationinthesenseofrieszkorenblum AT sergiorivas functionsofboundedkphvariationinthesenseofrieszkorenblum AT mariasanoja functionsofboundedkphvariationinthesenseofrieszkorenblum AT ivanzea functionsofboundedkphvariationinthesenseofrieszkorenblum |