Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum

We present the space of functions of bounded κφ-variation in the sense of Riesz-Korenblum, denoted by κBVφ[a,b], which is a combination of the notions of bounded φ-variation in the sense of Riesz and bounded κ-variation in the sense of Korenblum. Moreover, we prove that the space generated by this c...

Full description

Saved in:
Bibliographic Details
Main Authors: Mariela Castillo, Sergio Rivas, María Sanoja, Iván Zea
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2013/718507
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560347879309312
author Mariela Castillo
Sergio Rivas
María Sanoja
Iván Zea
author_facet Mariela Castillo
Sergio Rivas
María Sanoja
Iván Zea
author_sort Mariela Castillo
collection DOAJ
description We present the space of functions of bounded κφ-variation in the sense of Riesz-Korenblum, denoted by κBVφ[a,b], which is a combination of the notions of bounded φ-variation in the sense of Riesz and bounded κ-variation in the sense of Korenblum. Moreover, we prove that the space generated by this class of functions is a Banach space with a given norm and we prove that the uniformly bounded composition operator satisfies Matkowski's weak condition.
format Article
id doaj-art-cffd1439667e44f0956d2b40c8fd63f0
institution Kabale University
issn 0972-6802
1758-4965
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-cffd1439667e44f0956d2b40c8fd63f02025-02-03T01:27:51ZengWileyJournal of Function Spaces and Applications0972-68021758-49652013-01-01201310.1155/2013/718507718507Functions of Bounded κφ-Variation in the Sense of Riesz-KorenblumMariela Castillo0Sergio Rivas1María Sanoja2Iván Zea3Escuela de Matemática, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1050, VenezuelaÁrea de Matemática, Universidad Nacional Abierta, San Bernandino, Caracas 1010, VenezuelaEscuela de Matemática, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1050, VenezuelaEscuela de Matemática, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1050, VenezuelaWe present the space of functions of bounded κφ-variation in the sense of Riesz-Korenblum, denoted by κBVφ[a,b], which is a combination of the notions of bounded φ-variation in the sense of Riesz and bounded κ-variation in the sense of Korenblum. Moreover, we prove that the space generated by this class of functions is a Banach space with a given norm and we prove that the uniformly bounded composition operator satisfies Matkowski's weak condition.http://dx.doi.org/10.1155/2013/718507
spellingShingle Mariela Castillo
Sergio Rivas
María Sanoja
Iván Zea
Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum
Journal of Function Spaces and Applications
title Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum
title_full Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum
title_fullStr Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum
title_full_unstemmed Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum
title_short Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum
title_sort functions of bounded κφ variation in the sense of riesz korenblum
url http://dx.doi.org/10.1155/2013/718507
work_keys_str_mv AT marielacastillo functionsofboundedkphvariationinthesenseofrieszkorenblum
AT sergiorivas functionsofboundedkphvariationinthesenseofrieszkorenblum
AT mariasanoja functionsofboundedkphvariationinthesenseofrieszkorenblum
AT ivanzea functionsofboundedkphvariationinthesenseofrieszkorenblum