Remarks on the Unimodular Fourier Multipliers on α-Modulation Spaces

We study the boundedness properties of the Fourier multiplier operator eiμ(D) on α-modulation spaces Mp,qs,α  (0≤α<1) and Besov spaces Bp,qs(Mp,qs,1). We improve the conditions for the boundedness of Fourier multipliers with compact supports and for the boundedness of eiμ(D) on Mp,qs,α. If μ is a...

Full description

Saved in:
Bibliographic Details
Main Authors: Guoping Zhao, Jiecheng Chen, Weichao Guo
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2014/106267
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563385543163904
author Guoping Zhao
Jiecheng Chen
Weichao Guo
author_facet Guoping Zhao
Jiecheng Chen
Weichao Guo
author_sort Guoping Zhao
collection DOAJ
description We study the boundedness properties of the Fourier multiplier operator eiμ(D) on α-modulation spaces Mp,qs,α  (0≤α<1) and Besov spaces Bp,qs(Mp,qs,1). We improve the conditions for the boundedness of Fourier multipliers with compact supports and for the boundedness of eiμ(D) on Mp,qs,α. If μ is a radial function ϕ(|ξ|) and ϕ satisfies some size condition, we obtain the sufficient and necessary conditions for the boundedness of eiϕ(|D|) between Mp1,q1s1,α and Mp2,q2s2,α.
format Article
id doaj-art-cfa0059a903c4451bc3f1521643a9a5a
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-cfa0059a903c4451bc3f1521643a9a5a2025-02-03T01:20:26ZengWileyJournal of Function Spaces2314-88962314-88882014-01-01201410.1155/2014/106267106267Remarks on the Unimodular Fourier Multipliers on α-Modulation SpacesGuoping Zhao0Jiecheng Chen1Weichao Guo2Department of Mathematics, Zhejiang University, Hangzhou 310027, ChinaDepartment of Mathematics, Zhejiang Normal University, Jinhua 321004, ChinaDepartment of Mathematics, Xiamen University, Xiamen 361005, ChinaWe study the boundedness properties of the Fourier multiplier operator eiμ(D) on α-modulation spaces Mp,qs,α  (0≤α<1) and Besov spaces Bp,qs(Mp,qs,1). We improve the conditions for the boundedness of Fourier multipliers with compact supports and for the boundedness of eiμ(D) on Mp,qs,α. If μ is a radial function ϕ(|ξ|) and ϕ satisfies some size condition, we obtain the sufficient and necessary conditions for the boundedness of eiϕ(|D|) between Mp1,q1s1,α and Mp2,q2s2,α.http://dx.doi.org/10.1155/2014/106267
spellingShingle Guoping Zhao
Jiecheng Chen
Weichao Guo
Remarks on the Unimodular Fourier Multipliers on α-Modulation Spaces
Journal of Function Spaces
title Remarks on the Unimodular Fourier Multipliers on α-Modulation Spaces
title_full Remarks on the Unimodular Fourier Multipliers on α-Modulation Spaces
title_fullStr Remarks on the Unimodular Fourier Multipliers on α-Modulation Spaces
title_full_unstemmed Remarks on the Unimodular Fourier Multipliers on α-Modulation Spaces
title_short Remarks on the Unimodular Fourier Multipliers on α-Modulation Spaces
title_sort remarks on the unimodular fourier multipliers on α modulation spaces
url http://dx.doi.org/10.1155/2014/106267
work_keys_str_mv AT guopingzhao remarksontheunimodularfouriermultipliersonamodulationspaces
AT jiechengchen remarksontheunimodularfouriermultipliersonamodulationspaces
AT weichaoguo remarksontheunimodularfouriermultipliersonamodulationspaces