A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
Let $X$ be a $\mathbb{Q}$-Fano variety admitting a Kähler–Einstein metric. We prove that up to a finite quasi-étale cover, $X$ splits isometrically as a product of Kähler–Einstein $\mathbb{Q}$-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies am...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Académie des sciences
2024-06-01
|
| Series: | Comptes Rendus. Mathématique |
| Subjects: | |
| Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.612/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|