A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping

The exploitation of Si nanostructures for electronic and optoelectronic devices depends on their electronic doping. We investigate a methodology for As doping of Si nanostructures taking advantages of ion beam implantation and nanosecond laser irradiation melting dynamics. We illustrate the behaviou...

Full description

Saved in:
Bibliographic Details
Main Authors: F. Ruffino, L. Romano, E. Carria, M. Miritello, M. G. Grimaldi, V. Privitera, F. Marabelli
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2012/635705
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562219186913280
author F. Ruffino
L. Romano
E. Carria
M. Miritello
M. G. Grimaldi
V. Privitera
F. Marabelli
author_facet F. Ruffino
L. Romano
E. Carria
M. Miritello
M. G. Grimaldi
V. Privitera
F. Marabelli
author_sort F. Ruffino
collection DOAJ
description The exploitation of Si nanostructures for electronic and optoelectronic devices depends on their electronic doping. We investigate a methodology for As doping of Si nanostructures taking advantages of ion beam implantation and nanosecond laser irradiation melting dynamics. We illustrate the behaviour of As when it is confined, by the implantation technique, in a SiO2/Si/SiO2 multilayer and its spatial redistribution after annealing processes. As accumulation at the Si/SiO2 interfaces was observed by Rutherford backscattering spectrometry in agreement with a model that assumes a traps distribution in the Si in the first 2-3 nm above the SiO2/Si interfaces. A concentration of 1014 traps/cm2 has been evaluated. This result opens perspectives for As doping of Si nanoclusters embedded in SiO2 since a Si nanocluster of radius 1 nm embedded in SiO2 should trap 13 As atoms at the interface. In order to promote the As incorporation in the nanoclusters for an effective doping, an approach based on ion implantation and nanosecond laser irradiation was investigated. Si nanoclusters were produced in SiO2 layer. After As ion implantation and nanosecond laser irradiation, spectroscopic ellipsometry measurements show nanoclusters optical properties consistent with their effective doping.
format Article
id doaj-art-cefb128542814676842d8940852fa526
institution Kabale University
issn 1687-9503
1687-9511
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Nanotechnology
spelling doaj-art-cefb128542814676842d8940852fa5262025-02-03T01:23:16ZengWileyJournal of Nanotechnology1687-95031687-95112012-01-01201210.1155/2012/635705635705A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures DopingF. Ruffino0L. Romano1E. Carria2M. Miritello3M. G. Grimaldi4V. Privitera5F. Marabelli6Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, ItalyDipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, ItalyDipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, ItalyMATIS, CNR, IMM, via S. Sofia 64, 95123 Catania, ItalyDipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, ItalyMATIS, CNR, IMM, via S. Sofia 64, 95123 Catania, ItalyDipartimento di Fisica “A.Volta,” Università degli Studi di Pavia, via Bassi 6, 27100 Pavia, ItalyThe exploitation of Si nanostructures for electronic and optoelectronic devices depends on their electronic doping. We investigate a methodology for As doping of Si nanostructures taking advantages of ion beam implantation and nanosecond laser irradiation melting dynamics. We illustrate the behaviour of As when it is confined, by the implantation technique, in a SiO2/Si/SiO2 multilayer and its spatial redistribution after annealing processes. As accumulation at the Si/SiO2 interfaces was observed by Rutherford backscattering spectrometry in agreement with a model that assumes a traps distribution in the Si in the first 2-3 nm above the SiO2/Si interfaces. A concentration of 1014 traps/cm2 has been evaluated. This result opens perspectives for As doping of Si nanoclusters embedded in SiO2 since a Si nanocluster of radius 1 nm embedded in SiO2 should trap 13 As atoms at the interface. In order to promote the As incorporation in the nanoclusters for an effective doping, an approach based on ion implantation and nanosecond laser irradiation was investigated. Si nanoclusters were produced in SiO2 layer. After As ion implantation and nanosecond laser irradiation, spectroscopic ellipsometry measurements show nanoclusters optical properties consistent with their effective doping.http://dx.doi.org/10.1155/2012/635705
spellingShingle F. Ruffino
L. Romano
E. Carria
M. Miritello
M. G. Grimaldi
V. Privitera
F. Marabelli
A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping
Journal of Nanotechnology
title A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping
title_full A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping
title_fullStr A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping
title_full_unstemmed A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping
title_short A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping
title_sort combined ion implantation nanosecond laser irradiation approach towards si nanostructures doping
url http://dx.doi.org/10.1155/2012/635705
work_keys_str_mv AT fruffino acombinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT lromano acombinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT ecarria acombinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT mmiritello acombinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT mggrimaldi acombinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT vprivitera acombinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT fmarabelli acombinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT fruffino combinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT lromano combinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT ecarria combinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT mmiritello combinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT mggrimaldi combinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT vprivitera combinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping
AT fmarabelli combinedionimplantationnanosecondlaserirradiationapproachtowardssinanostructuresdoping