Microstructures, mechanical properties, and grease-lubricated sliding wear behavior of Cu-15Ni-8Sn-0.8Nb alloy with high strength and toughness
Abstract Alloys used as bearings in aircraft landing gear are required to reduce friction and wear as well as improve the load-carrying capability due to the increased aircraft weights. Cu-15Ni-8Sn-0.8Nb alloy is well known for possessing good mechanical and wear properties that satisfy such require...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Tsinghua University Press
2020-10-01
|
| Series: | Friction |
| Subjects: | |
| Online Access: | https://doi.org/10.1007/s40544-020-0399-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Alloys used as bearings in aircraft landing gear are required to reduce friction and wear as well as improve the load-carrying capability due to the increased aircraft weights. Cu-15Ni-8Sn-0.8Nb alloy is well known for possessing good mechanical and wear properties that satisfy such requirements. In this study, the microstructure, mechanical properties, and grease-lubricated sliding wear behavior of Cu-15Ni-8Sn-0.8Nb alloy with 0.8 wt% Nb are investigated. The nanoscale NbNi3 and NbNi2Sn compounds can strengthen the alloy through the Orowan strengthening mechanism. A Stribeck-like curve is plotted to illustrate the relationship among friction coefficient, normal load, and sliding velocity and to analyze the grease-lubricated mechanism. The wear rate increases with normal load and decreases with sliding velocity, except at 2.58 m/s. A wear mechanism map has been developed to exhibit the dominant wear mechanisms under various friction conditions. When the normal load is 700 N and the sliding velocity is 2.58 m/s, a chemical reaction between the lubricating grease and friction pairs occurs, resulting in the failure of lubricating grease and an increase in wear. |
|---|---|
| ISSN: | 2223-7690 2223-7704 |