Complexity Analysis of New Future Video Coding (FVC) Standard Technology

Future Video Coding (FVC) is a modern standard in the field of video coding that offers much higher compression efficiency than the HEVC standard. FVC was developed by the Joint Video Exploration Team (JVET), formed through collaboration between the ISO/IEC MPEG and ITU-T VCEG. New tools emerging wi...

Full description

Saved in:
Bibliographic Details
Main Authors: Soulef Bouaafia, Randa Khemiri, Seifeddine Messaoud, Fatma Elzahra Sayadi
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Digital Multimedia Broadcasting
Online Access:http://dx.doi.org/10.1155/2021/6627673
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Future Video Coding (FVC) is a modern standard in the field of video coding that offers much higher compression efficiency than the HEVC standard. FVC was developed by the Joint Video Exploration Team (JVET), formed through collaboration between the ISO/IEC MPEG and ITU-T VCEG. New tools emerging with the FVC bring in super resolution implementation schemes that are being recommended for Ultra-High-Definition (UHD) video coding in both SDR and HDR images. However, a new flexible block structure is adopted in the FVC standard, which is named quadtree plus binary tree (QTBT) in order to enhance compression efficiency. In this paper, we provide a fast FVC algorithm to achieve better performance and to reduce encoding complexity. First, we evaluate the FVC profiles under All Intra, Low-Delay P, and Random Access to determine which coding components consume the most time. Second, a fast FVC mode decision is proposed to reduce encoding computational complexity. Then, a comparison between three configurations, namely, Random Access, Low-Delay B, and Low-Delay P, is proposed, in terms of Bitrate, PSNR, and encoding time. Compared to previous works, the experimental results prove that the time saving reaches 13% with a decrease in the Bitrate of about 0.6% and in the PSNR of 0.01 to 0.2 dB.
ISSN:1687-7578
1687-7586