On-Demand Gait-Synchronous Electrical Cueing in Parkinson's Disease Using Machine Learning and Edge Computing: A Pilot Study

<italic>Goal:</italic> Parkinson&#x0027;s disease (PD) can lead to gait impairment and Freezing of Gait (FoG). Recent advances in cueing technologies have enhanced mobility in PD patients. While sensor technology and machine learning offer real-time detection for on-demand cueing, ex...

Full description

Saved in:
Bibliographic Details
Main Authors: Ardit Dvorani, Constantin Wiesener, Christina Salchow-Hommen, Magdalena Jochner, Lotta Spieker, Matej Skrobot, Hanno Voigt, Andrea Kuhn, Nikolaus Wenger, Thomas Schauer
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Engineering in Medicine and Biology
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10504963/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832582336796950528
author Ardit Dvorani
Constantin Wiesener
Christina Salchow-Hommen
Magdalena Jochner
Lotta Spieker
Matej Skrobot
Hanno Voigt
Andrea Kuhn
Nikolaus Wenger
Thomas Schauer
author_facet Ardit Dvorani
Constantin Wiesener
Christina Salchow-Hommen
Magdalena Jochner
Lotta Spieker
Matej Skrobot
Hanno Voigt
Andrea Kuhn
Nikolaus Wenger
Thomas Schauer
author_sort Ardit Dvorani
collection DOAJ
description <italic>Goal:</italic> Parkinson&#x0027;s disease (PD) can lead to gait impairment and Freezing of Gait (FoG). Recent advances in cueing technologies have enhanced mobility in PD patients. While sensor technology and machine learning offer real-time detection for on-demand cueing, existing systems are limited by the usage of smartphones between the sensor(s) and cueing device(s) for data processing. By avoiding this we aim at improving usability, robustness, and detection delay. <italic>Methods:</italic> We present a new technical solution, that runs detection and cueing algorithms directly on the sensing and cueing devices, bypassing the smartphone. This solution relies on edge computing on the devices&#x0027; hardware. The wearable system consists of a single inertial sensor to control a stimulator and enables machine-learning-based FoG detection by classifying foot motion phases as either normal or FoG-affected. We demonstrate the system&#x0027;s functionality and safety during on-demand gait-synchronous electrical cueing in two patients, performing freezing of gait assessments. As references, motion phases and FoG episodes have been video-annotated. <italic>Results:</italic> The analysis confirms adequate gait phase and FoG detection performance. The mobility assistant detected foot motions with a rate above 94 &#x0025; and classified them with an accuracy of 84 &#x0025; into normal or FoG-affected. The FoG detection delay is mainly defined by the foot-motion duration, which is below the delay in existing sliding-window approaches. <italic>Conclusions:</italic> Direct computing on the sensor and cueing devices ensures robust detection of FoG-affected motions for on demand cueing synchronized with the gait. The proposed solution can be easily adopted to other sensor and cueing modalities.
format Article
id doaj-art-cce108a80a69495ba4fe80eb520dcff7
institution Kabale University
issn 2644-1276
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of Engineering in Medicine and Biology
spelling doaj-art-cce108a80a69495ba4fe80eb520dcff72025-01-30T00:03:52ZengIEEEIEEE Open Journal of Engineering in Medicine and Biology2644-12762024-01-01530631510.1109/OJEMB.2024.339056210504963On-Demand Gait-Synchronous Electrical Cueing in Parkinson&#x0027;s Disease Using Machine Learning and Edge Computing: A Pilot StudyArdit Dvorani0https://orcid.org/0009-0002-2765-8729Constantin Wiesener1https://orcid.org/0000-0003-0795-2306Christina Salchow-Hommen2https://orcid.org/0000-0001-5527-9895Magdalena Jochner3https://orcid.org/0000-0003-1505-4135Lotta Spieker4https://orcid.org/0009-0000-7750-1469Matej Skrobot5https://orcid.org/0000-0001-6686-1880Hanno Voigt6https://orcid.org/0009-0007-7159-2321Andrea Kuhn7https://orcid.org/0000-0002-4134-9060Nikolaus Wenger8https://orcid.org/0000-0002-0965-7530Thomas Schauer9https://orcid.org/0000-0002-0865-4418Control Systems Group, Technische Universit&#x00E4;t Berlin, Berlin, GermanySensorStim Neurotechnology GmbH, Berlin, GermanyDepartment for Neurology, Charit&#x00E9; &#x2013; Universit&#x00E4;tsmedizin Berlin, Berlin, GermanyDepartment for Neurology, Charit&#x00E9; &#x2013; Universit&#x00E4;tsmedizin Berlin, Berlin, GermanyControl Systems Group, Technische Universit&#x00E4;t Berlin, Berlin, GermanyDepartment for Neurology, Charit&#x00E9; &#x2013; Universit&#x00E4;tsmedizin Berlin, Berlin, GermanySensorStim Neurotechnology GmbH, Berlin, GermanyDepartment for Neurology, Charit&#x00E9; &#x2013; Universit&#x00E4;tsmedizin Berlin, Berlin, GermanyDepartment for Neurology, Charit&#x00E9; &#x2013; Universit&#x00E4;tsmedizin Berlin, Berlin, GermanyControl Systems Group, Technische Universit&#x00E4;t Berlin, Berlin, Germany<italic>Goal:</italic> Parkinson&#x0027;s disease (PD) can lead to gait impairment and Freezing of Gait (FoG). Recent advances in cueing technologies have enhanced mobility in PD patients. While sensor technology and machine learning offer real-time detection for on-demand cueing, existing systems are limited by the usage of smartphones between the sensor(s) and cueing device(s) for data processing. By avoiding this we aim at improving usability, robustness, and detection delay. <italic>Methods:</italic> We present a new technical solution, that runs detection and cueing algorithms directly on the sensing and cueing devices, bypassing the smartphone. This solution relies on edge computing on the devices&#x0027; hardware. The wearable system consists of a single inertial sensor to control a stimulator and enables machine-learning-based FoG detection by classifying foot motion phases as either normal or FoG-affected. We demonstrate the system&#x0027;s functionality and safety during on-demand gait-synchronous electrical cueing in two patients, performing freezing of gait assessments. As references, motion phases and FoG episodes have been video-annotated. <italic>Results:</italic> The analysis confirms adequate gait phase and FoG detection performance. The mobility assistant detected foot motions with a rate above 94 &#x0025; and classified them with an accuracy of 84 &#x0025; into normal or FoG-affected. The FoG detection delay is mainly defined by the foot-motion duration, which is below the delay in existing sliding-window approaches. <italic>Conclusions:</italic> Direct computing on the sensor and cueing devices ensures robust detection of FoG-affected motions for on demand cueing synchronized with the gait. The proposed solution can be easily adopted to other sensor and cueing modalities.https://ieeexplore.ieee.org/document/10504963/Edge computingfreezing of gaitinertial sensorsmachine learningon-demand cueing
spellingShingle Ardit Dvorani
Constantin Wiesener
Christina Salchow-Hommen
Magdalena Jochner
Lotta Spieker
Matej Skrobot
Hanno Voigt
Andrea Kuhn
Nikolaus Wenger
Thomas Schauer
On-Demand Gait-Synchronous Electrical Cueing in Parkinson&#x0027;s Disease Using Machine Learning and Edge Computing: A Pilot Study
IEEE Open Journal of Engineering in Medicine and Biology
Edge computing
freezing of gait
inertial sensors
machine learning
on-demand cueing
title On-Demand Gait-Synchronous Electrical Cueing in Parkinson&#x0027;s Disease Using Machine Learning and Edge Computing: A Pilot Study
title_full On-Demand Gait-Synchronous Electrical Cueing in Parkinson&#x0027;s Disease Using Machine Learning and Edge Computing: A Pilot Study
title_fullStr On-Demand Gait-Synchronous Electrical Cueing in Parkinson&#x0027;s Disease Using Machine Learning and Edge Computing: A Pilot Study
title_full_unstemmed On-Demand Gait-Synchronous Electrical Cueing in Parkinson&#x0027;s Disease Using Machine Learning and Edge Computing: A Pilot Study
title_short On-Demand Gait-Synchronous Electrical Cueing in Parkinson&#x0027;s Disease Using Machine Learning and Edge Computing: A Pilot Study
title_sort on demand gait synchronous electrical cueing in parkinson x0027 s disease using machine learning and edge computing a pilot study
topic Edge computing
freezing of gait
inertial sensors
machine learning
on-demand cueing
url https://ieeexplore.ieee.org/document/10504963/
work_keys_str_mv AT arditdvorani ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT constantinwiesener ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT christinasalchowhommen ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT magdalenajochner ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT lottaspieker ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT matejskrobot ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT hannovoigt ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT andreakuhn ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT nikolauswenger ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy
AT thomasschauer ondemandgaitsynchronouselectricalcueinginparkinsonx0027sdiseaseusingmachinelearningandedgecomputingapilotstudy