A Machine Learning System for Routing Decision-Making in Urban Vehicular Ad Hoc Networks

In vehicular ad hoc networks (VANETs), network topology and communication links frequently change due to the high mobility of vehicles. Key challenges include how to shorten transmission delays and increase the stability of transmissions. When establishing routing paths, most research focuses on det...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Kuang Lai, Mei-Tso Lin, Yu-Hsuan Yang
Format: Article
Language:English
Published: Wiley 2015-03-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2015/374391
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In vehicular ad hoc networks (VANETs), network topology and communication links frequently change due to the high mobility of vehicles. Key challenges include how to shorten transmission delays and increase the stability of transmissions. When establishing routing paths, most research focuses on detecting traffic and selecting roads with higher vehicle densities in order to transmit packets, thus avoiding carry-and-forward scenarios and decreasing transmission delays; however, such approaches may not obtain accurate real-time traffic densities by periodically monitoring each road because vehicle densities change so rapidly. In this paper, we propose a novel routing information system called the machine learning-assisted route selection (MARS) system to estimate necessary information for routing protocols. In MARS, road information is maintained in roadside units with the help of machine learning. We use machine learning to predict the moves of vehicles and then choose some suitable routing paths with better transmission capacity to transmit packets. Further, MARS can help to decide the forwarding direction between two RSUs according to the predicted location of the destination and the estimated transmission delays in both forwarding directions. Our proposed system can provide in-time routing information for VANETs and greatly enhance network performance.
ISSN:1550-1477