Learning Force-Relevant Skills from Human Demonstration
Many human manipulation skills are force relevant, such as opening a bottle cap and assembling furniture. However, it is still a difficult task to endow a robot with these skills, which largely is due to the complexity of the representation and planning of these skills. This paper presents a learnin...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/5262859 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many human manipulation skills are force relevant, such as opening a bottle cap and assembling furniture. However, it is still a difficult task to endow a robot with these skills, which largely is due to the complexity of the representation and planning of these skills. This paper presents a learning-based approach of transferring force-relevant skills from human demonstration to a robot. First, the force-relevant skill is encapsulated as a statistical model where the key parameters are learned from the demonstrated data (motion, force). Second, based on the learned skill model, a task planner is devised which specifies the motion and/or the force profile for a given manipulation task. Finally, the learned skill model is further integrated with an adaptive controller that offers task-consistent force adaptation during online executions. The effectiveness of the proposed approach is validated with two experiments, i.e., an object polishing task and a peg-in-hole assembly. |
---|---|
ISSN: | 1076-2787 1099-0526 |