Quantifying Streambed Grain Size, Uncertainty, and Hydrobiogeochemical Parameters Using Machine Learning Model YOLO
Abstract Streambed grain sizes control river hydro‐biogeochemical (HBGC) processes and functions. However, measuring their quantities, distributions, and uncertainties is challenging due to the diversity and heterogeneity of natural streams. This work presents a photo‐driven, artificial intelligence...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2024-11-01
|
| Series: | Water Resources Research |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2023WR036456 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|