Priority-Based Data Flow Control for Long-Range Wide Area Networks in Internet of Military Things
The Internet of Military Things (IoMT) is transforming defense operations by enabling the seamless integration of sensors and actuators for the real-time transmission of critical data in diverse military environments. End devices (EDs) collect essential information, including troop locations, health...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Journal of Sensor and Actuator Networks |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2224-2708/14/2/43 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Internet of Military Things (IoMT) is transforming defense operations by enabling the seamless integration of sensors and actuators for the real-time transmission of critical data in diverse military environments. End devices (EDs) collect essential information, including troop locations, health metrics, equipment status, and environmental conditions, which are processed to enhance situational awareness and operational efficiency. In scenarios involving large-scale deployments across remote or austere regions, wired communication systems are often impractical and cost-prohibitive. Wireless sensor networks (WSNs) provide a cost-effective alternative, with Long-Range Wide Area Network (LoRaWAN) emerging as a leading protocol due to its extensive coverage, low energy consumption, and reliability. Existing LoRaWAN network simulation modules, such as those in ns-3, primarily support uniform periodic data transmissions, limiting their applicability in critical military and healthcare contexts that demand adaptive transmission rates, resource optimization, and prioritized data delivery. These limitations are particularly pronounced in healthcare monitoring, where frequent, high-rate data transmission is vital but can strain the network’s capacity. To address these challenges, we developed an enhanced sensor data sender application capable of simulating priority-based traffic within LoRaWAN, specifically targeting use cases like border security and healthcare monitoring. This study presents a priority-based data flow control protocol designed to optimize network performance under high-rate healthcare data conditions while maintaining overall system reliability. Simulation results demonstrate that the proposed protocol effectively mitigates performance bottlenecks, ensuring robust and energy-efficient communication in critical IoMT applications within austere environments. |
|---|---|
| ISSN: | 2224-2708 |