Fall detection via human posture representation and support vector machine

Accidental falls of elderly people are a major cause of fatal injuries, especially for those living alone. We present a novel vision–based fall detection approach that analyzes an extracted human body using described human postures. First, a human body extracted by a background subtraction technique...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaibo Fan, Ping Wang, Yan Hu, Bingjie Dou
Format: Article
Language:English
Published: Wiley 2017-05-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1177/1550147717707418
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accidental falls of elderly people are a major cause of fatal injuries, especially for those living alone. We present a novel vision–based fall detection approach that analyzes an extracted human body using described human postures. First, a human body extracted by a background subtraction technique is located by a minimum area-enclosing ellipse. Then, a normalized directional histogram is developed around the center of the ellipse to represent a human posture by multi-directional statistical analysis. After that, 12 static and 8 dynamic features are derived from the normalized directional histogram. These features are fed into a directed acyclic graph support vector machine to distinguish four closely related human postures (standing, crouching, lying, and sitting). A fall-like accident is detected by counting the occurrences of lying postures in a short temporal window. After conducting majority voting, a fall event is determined by immobility verification. From the experimental results, an overall accuracy of 97.1% is obtained for recognition of the four postures, and only 1.0% of postures are misclassified as lying postures. Our fall detection system achieves up to 95.2% fall detection accuracy on a public fall dataset.
ISSN:1550-1477