An Improved Lagrange Particle Swarm Optimization Algorithm and Its Application in Multiple Fault Diagnosis

The fault rate in equipment increases significantly along with the service life of the equipment, especially for multiple fault. Typically, the Bayesian theory is used to construct the model of faults, and intelligent algorithm is used to solve the model. Lagrangian relaxation algorithm can be adopt...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaofeng Lv, Deyun Zhou, Ling Ma, Yuyuan Zhang, Yongchuan Tang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/1091548
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fault rate in equipment increases significantly along with the service life of the equipment, especially for multiple fault. Typically, the Bayesian theory is used to construct the model of faults, and intelligent algorithm is used to solve the model. Lagrangian relaxation algorithm can be adopted to solve multiple fault diagnosis models. But the mathematical derivation process may be complex, while the updating method for Lagrangian multiplier is limited and it may fall into a local optimal solution. The particle swarm optimization (PSO) algorithm is a global search algorithm. In this paper, an improved Lagrange-particle swarm optimization algorithm is proposed. The updating of the Lagrangian multipliers is with the PSO algorithm for global searching. The difference between the upper and lower bounds is proposed to construct the fitness function of PSO. The multiple fault diagnosis model can be solved by the improved Lagrange-particle swarm optimization algorithm. Experiment on a case study of sensor data-based multiple fault diagnosis verifies the effectiveness and robustness of the proposed method.
ISSN:1070-9622
1875-9203