Structural basis of β-glucopyranoside salicin recognition by a human bitter taste GPCR

Summary: The human perception of bitterness is mediated by type 2 taste receptors (TAS2Rs), which recognize a broad array of bitter substances with distinct chemical properties. TAS2R16 exhibits a pronounced selectivity for β-glucoside-moiety-containing compounds, such as salicin from willow bark. H...

Full description

Saved in:
Bibliographic Details
Main Authors: Xin Wang, Cui Zhou, Weizhen Ao, Lijie Wu, Yiran Wu, Weixiu Xu, Shenhui Liu, Qiwen Tan, Ling Wang, Fei Zhao, Junlin Liu, Yuan Pei, Suwen Zhao, Tian Hua
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124725003754
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: The human perception of bitterness is mediated by type 2 taste receptors (TAS2Rs), which recognize a broad array of bitter substances with distinct chemical properties. TAS2R16 exhibits a pronounced selectivity for β-glucoside-moiety-containing compounds, such as salicin from willow bark. However, the molecular mechanism of moiety-specific recognition and receptor activation in TAS2R16 remains unclear. Here, we present cryoelectron microscopy structures of the salicin-activated human TAS2R16 complexed with gustducin and Gi1 and Gi2 proteins. The binding mode of salicin with TAS2R16 and the specific interactions of the β-D-glucopyranoside moiety are detailed. Together with molecular docking and mutagenesis data, this study uncovers the structural underpinnings of TAS2R16’s group-specific recognition, receptor activation, and subsequent gustducin and Gi protein coupling. These findings advance our understanding of human bitter taste receptors and provide a foundation for structural modifications of bitter glycosides, opening potential therapeutic applications.
ISSN:2211-1247