Symplectic Schemes for Linear Stochastic Schrödinger Equations with Variable Coefficients
This paper proposes a kind of symplectic schemes for linear Schrödinger equations with variable coefficients and a stochastic perturbation term by using compact schemes in space. The numerical stability property of the schemes is analyzed. The schemes preserve a discrete charge conservation law. The...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2014/427023 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper proposes a kind of symplectic schemes for linear Schrödinger equations with variable coefficients and a stochastic perturbation term by using compact schemes in space. The numerical stability property of the schemes is analyzed. The schemes preserve a discrete charge conservation law. They also follow a discrete energy transforming formula. The numerical experiments verify our analysis. |
|---|---|
| ISSN: | 1085-3375 1687-0409 |