Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales

We deal with the oscillation of a generalized Emden-Fowler dynamic equation in the form (rtZΔtα-1ZΔt)Δ+f(t,x(δ(t)))=0. We establish some new oscillation criteria for the equation, which improve some of the main results of (H. Liu and P. Liu, 2013). Some examples are given to illustrate the new resul...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiaoshun Yang, Lynn Erbe, Baoguo Jia
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/597325
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554177075609600
author Qiaoshun Yang
Lynn Erbe
Baoguo Jia
author_facet Qiaoshun Yang
Lynn Erbe
Baoguo Jia
author_sort Qiaoshun Yang
collection DOAJ
description We deal with the oscillation of a generalized Emden-Fowler dynamic equation in the form (rtZΔtα-1ZΔt)Δ+f(t,x(δ(t)))=0. We establish some new oscillation criteria for the equation, which improve some of the main results of (H. Liu and P. Liu, 2013). Some examples are given to illustrate the new results.
format Article
id doaj-art-c50472e671aa4fea96cec7dd7feb7530
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-c50472e671aa4fea96cec7dd7feb75302025-02-03T05:52:15ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/597325597325Oscillation of Certain Emden-Fowler Dynamic Equations on Time ScalesQiaoshun Yang0Lynn Erbe1Baoguo Jia2Department of Mathematics and Computer Science, Normal College, Jishou University, Jishou, Hunan 416000, ChinaDepartment of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USASchool of Mathematics and Computer Science, Zhongshan University, Guangzhou 510275, ChinaWe deal with the oscillation of a generalized Emden-Fowler dynamic equation in the form (rtZΔtα-1ZΔt)Δ+f(t,x(δ(t)))=0. We establish some new oscillation criteria for the equation, which improve some of the main results of (H. Liu and P. Liu, 2013). Some examples are given to illustrate the new results.http://dx.doi.org/10.1155/2014/597325
spellingShingle Qiaoshun Yang
Lynn Erbe
Baoguo Jia
Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales
Abstract and Applied Analysis
title Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales
title_full Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales
title_fullStr Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales
title_full_unstemmed Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales
title_short Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales
title_sort oscillation of certain emden fowler dynamic equations on time scales
url http://dx.doi.org/10.1155/2014/597325
work_keys_str_mv AT qiaoshunyang oscillationofcertainemdenfowlerdynamicequationsontimescales
AT lynnerbe oscillationofcertainemdenfowlerdynamicequationsontimescales
AT baoguojia oscillationofcertainemdenfowlerdynamicequationsontimescales