Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales
We deal with the oscillation of a generalized Emden-Fowler dynamic equation in the form (rtZΔtα-1ZΔt)Δ+f(t,x(δ(t)))=0. We establish some new oscillation criteria for the equation, which improve some of the main results of (H. Liu and P. Liu, 2013). Some examples are given to illustrate the new resul...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/597325 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554177075609600 |
---|---|
author | Qiaoshun Yang Lynn Erbe Baoguo Jia |
author_facet | Qiaoshun Yang Lynn Erbe Baoguo Jia |
author_sort | Qiaoshun Yang |
collection | DOAJ |
description | We deal with the oscillation of a generalized Emden-Fowler dynamic equation in the form (rtZΔtα-1ZΔt)Δ+f(t,x(δ(t)))=0. We establish some new oscillation criteria for the equation, which improve some of the main results of (H. Liu and P. Liu, 2013). Some examples are given to illustrate the new results. |
format | Article |
id | doaj-art-c50472e671aa4fea96cec7dd7feb7530 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-c50472e671aa4fea96cec7dd7feb75302025-02-03T05:52:15ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/597325597325Oscillation of Certain Emden-Fowler Dynamic Equations on Time ScalesQiaoshun Yang0Lynn Erbe1Baoguo Jia2Department of Mathematics and Computer Science, Normal College, Jishou University, Jishou, Hunan 416000, ChinaDepartment of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USASchool of Mathematics and Computer Science, Zhongshan University, Guangzhou 510275, ChinaWe deal with the oscillation of a generalized Emden-Fowler dynamic equation in the form (rtZΔtα-1ZΔt)Δ+f(t,x(δ(t)))=0. We establish some new oscillation criteria for the equation, which improve some of the main results of (H. Liu and P. Liu, 2013). Some examples are given to illustrate the new results.http://dx.doi.org/10.1155/2014/597325 |
spellingShingle | Qiaoshun Yang Lynn Erbe Baoguo Jia Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales Abstract and Applied Analysis |
title | Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales |
title_full | Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales |
title_fullStr | Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales |
title_full_unstemmed | Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales |
title_short | Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales |
title_sort | oscillation of certain emden fowler dynamic equations on time scales |
url | http://dx.doi.org/10.1155/2014/597325 |
work_keys_str_mv | AT qiaoshunyang oscillationofcertainemdenfowlerdynamicequationsontimescales AT lynnerbe oscillationofcertainemdenfowlerdynamicequationsontimescales AT baoguojia oscillationofcertainemdenfowlerdynamicequationsontimescales |