The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base

Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed Gad, Aws S. ArRejaie, Mohamed Saber Abdel-Halim, Ahmed Rahoma
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Dentistry
Online Access:http://dx.doi.org/10.1155/2016/7094056
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n=10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P≤0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P≤0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers.
ISSN:1687-8728
1687-8736