CdSe Quantum Dots for Solar Cell Devices
CdSe quantum dots have been prepared with different sizes and exploited as inorganic dye to sensitize a wide bandgap TiO2 thin films for QDs solar cells. The synthesis is based on the pyrolysis of organometallic reagents by injection into a hot coordinating solvent. This provides temporally discrete...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2012/952610 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CdSe quantum dots have been prepared with different sizes and exploited as inorganic dye to sensitize a wide bandgap TiO2 thin films for QDs solar cells. The synthesis is based on the pyrolysis of organometallic reagents by injection into a hot coordinating solvent. This provides temporally discrete nucleation and permits controlled growth of macroscopic quantities of nanocrystallites. XRD, HRTEM, UV-visible, and PL were used to characterize the synthesized quantum dots. The results showed CdSe quantum dots with sizes ranging from 3 nm to 6 nm which enabled the control of the optical properties and consequently the solar cell performance. Solar cell of 0.08% performance under solar irradiation with a light intensity of 100 mW/cm2 has been obtained. CdSe/TiO2 solar cells without and with using mercaptopropionic acid (MPA) as a linker between CdSe and TiO2 particles despite a Voc of 428 mV, Jsc of 0.184 mAcm-2, FF of 0.57, and η of 0.05% but with linker despite a Voc of 543 mV, Jsc of 0.318 mAcm-2 , FF of 0.48, and η of 0.08%, respectively. |
---|---|
ISSN: | 1110-662X 1687-529X |