Global Finite-Time Output Feedback Stabilization for a Class of Uncertain Nonholonomic Systems
This paper investigates the problem of global finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. By using backstepping recursive technique and the homogeneous domination approach, a constructive design procedure for output feedback co...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/926971 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the problem of global finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. By using backstepping recursive technique and the homogeneous domination approach, a constructive design procedure for output feedback control is given. Together with a novel switching control strategy, the designed controller renders that the states of closed-loop system are regulated to zero in a finite time. A simulation example is provided to illustrate the effectiveness of the proposed
approach. |
---|---|
ISSN: | 1085-3375 1687-0409 |