Predictive Control for PV- Water Pumping System based of Interconnected High Gain Observer

This article presents a comprehensive evaluation of an integrated photovoltaic (PV) and water pumping system employing both Finite Set Model Predictive Control (FS-MPC) and Deat Beat Predictive Control (DB-MPC) under varying insolation levels (1000 W/m² to 700 W/m²). The system, initially tested at...

Full description

Saved in:
Bibliographic Details
Main Authors: Lamouchi Zakaria, Allal Abderrahim, Abderrahmane Khechekhouche, Antonio Marcos de Oliveira Siqueira, Júlio Cesar Costa Campos, Kheireddine Lamamra
Format: Article
Language:English
Published: Universidade Federal de Viçosa (UFV) 2024-01-01
Series:The Journal of Engineering and Exact Sciences
Subjects:
Online Access:https://periodicos.ufv.br/jcec/article/view/18214
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a comprehensive evaluation of an integrated photovoltaic (PV) and water pumping system employing both Finite Set Model Predictive Control (FS-MPC) and Deat Beat Predictive Control (DB-MPC) under varying insolation levels (1000 W/m² to 700 W/m²). The system, initially tested at 1000 W/m², rapidly achieves Maximum Power Point Tracking (MPPT), stabilizing PV parameters at the MPP within 0.2 seconds. Notably, DB-MPC demonstrates superior dynamic response and faster settling times compared to conventional methods. The Interconnected High-Gain Observer accurately estimates motor speed, facilitating the attainment of the rated rotor speed in line with the desired reference speed. Transitioning from 1000 W/m² to 700 W/m² insolation, the system exhibits stability in Vpv and rapid Ipv adjustment at MPP. The InC algorithm extends PV array operation, showcasing a decrease in power output to 2204 W at 60% flow rate. These results affirm the efficacy and adaptability of the proposed control strategies in optimizing the performance of the PV-driven water pumping system, offering promising advancements in sustainable energy applications.
ISSN:2527-1075