Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means
We present the best possible parameters α1,α2,β1,β2∈R and α3,β3∈(1/2,1) such that the double inequalities α1A(a,b)+(1-α1)C(a,b)<NQA(a,b)<β1A(a,b)+(1-β1)C(a,b),Aα2(a,b)C1-α2(a,b)<NQA(a,b)<Aβ2(a,b)C1-β2(a,b), and C[α3a+(1-α3)b,α3b+(1-α3)a]<NQA(a,b)<C[β3a+(1-β3)b,β3b+(1-β3)a] hold for...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2016/5131907 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the best possible parameters α1,α2,β1,β2∈R and α3,β3∈(1/2,1) such that the double inequalities α1A(a,b)+(1-α1)C(a,b)<NQA(a,b)<β1A(a,b)+(1-β1)C(a,b),Aα2(a,b)C1-α2(a,b)<NQA(a,b)<Aβ2(a,b)C1-β2(a,b), and C[α3a+(1-α3)b,α3b+(1-α3)a]<NQA(a,b)<C[β3a+(1-β3)b,β3b+(1-β3)a] hold for all a,b>0 with a≠b and give several sharp inequalities involving the hyperbolic and inverse hyperbolic functions. Here, N(a,b), A(a,b), Q(a,b), and C(a,b) are, respectively, the Neuman, arithmetic, quadratic, and centroidal means of a and b, and NQA(a,b)=N[Q(a,b),A(a,b)]. |
---|---|
ISSN: | 2314-8896 2314-8888 |