An Iterative Determination Method of an Axial Deployment Force of a Lanyard-Deployed Coilable Mast in Local Coil Mode

The axial deployment force is an indispensable parameter of a lanyard-deployed coilable mast, which reflects its load capacity in practical applications. However, research on the axial deployment force in the literature is very limited, and there are no mature numerical methods to determine this par...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Liu, Liang Sun, Hai Huang, Xurui Zhao, Jiahao Liu, Yishi Qiao
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2024/3503468
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The axial deployment force is an indispensable parameter of a lanyard-deployed coilable mast, which reflects its load capacity in practical applications. However, research on the axial deployment force in the literature is very limited, and there are no mature numerical methods to determine this parameter in the design stage of coilable masts. In this paper, a numerical method for determining the axial deployment force of a lanyard-deployed coilable mast in the local coil mode is presented. Through this method, the designer can quickly obtain the estimated value of the axial deployment force in the design stage, which is convenient for the quantitative design of parameters. To verify the correctness of the proposed method, a dynamic simulation of the coilable mast is carried out, and a microgravity test is performed. The comparison results show that the error between the numerical method and the simulation and experimental results is less than 5%, which proves the correctness of the proposed method. In addition, the coilable mast studied in this paper has been verified by an actual microsatellite deployment in orbit.
ISSN:1687-5974