System-level modeling with temperature compensation for a CMOS-MEMS monolithic calorimetric flow sensing SoC
Abstract We present a system-level model with an on-chip temperature compensation technique for a CMOS-MEMS monolithic calorimetric flow sensing SoC. The model encompasses mechanical, thermal, and electrical domains to facilitate the co-design of a MEMS sensor and CMOS interface circuits on the EDA...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2025-01-01
|
Series: | Microsystems & Nanoengineering |
Online Access: | https://doi.org/10.1038/s41378-024-00853-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We present a system-level model with an on-chip temperature compensation technique for a CMOS-MEMS monolithic calorimetric flow sensing SoC. The model encompasses mechanical, thermal, and electrical domains to facilitate the co-design of a MEMS sensor and CMOS interface circuits on the EDA platform. The compensation strategy is implemented on-chip with a variable temperature difference heating circuit. Results show that the linear programming for the low-temperature drift in the SoC output is characterized by a compensation resistor R c with a resistance value of 748.21 Ω and a temperature coefficient of resistance of 3.037 × 10−3 °C−1 at 25 °C. Experimental validation demonstrates that within an ambient temperature range of 0–50 °C and a flow range of 0–10 m/s, the temperature drift of the sensor is reduced to ±1.6%, as compared to ±8.9% observed in a counterpart with the constant temperature difference circuit. Therefore, this on-chip temperature-compensated CMOS-MEMS flow sensing SoC is promising for low-cost sensing applications such as respiratory monitoring and smart energy-efficient buildings. |
---|---|
ISSN: | 2055-7434 |