Intervalence plasmons in boron-doped diamond

Abstract Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping o...

Full description

Saved in:
Bibliographic Details
Main Authors: Souvik Bhattacharya, Jonathan Boyd, Sven Reichardt, Valentin Allard, Amir Hossein Talebi, Nicolò Maccaferri, Olga Shenderova, Aude L. Lereu, Ludger Wirtz, Giuseppe Strangi, R. Mohan Sankaran
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55353-0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping on the electronic band structure of diamond are well-studied, any link between charge carriers and plasmons has never been shown. Here, we report intervalence plasmons in boron-doped diamond, defined as collective electronic excitations between the valence subbands, opened up by the presence of holes. Evidence for these low-energy excitations is provided by valence electron energy loss spectroscopy and near-field infrared spectroscopy. The measured spectra are subsequently reproduced by first-principles calculations based on the contribution of intervalence band transitions to the dielectric function. Our calculations also reveal that the real part of the dielectric function exhibits a crossover characteristic of metallicity. These results suggest a new mechanism for inducing plasmon-like behavior in doped semiconductors, and the possibility of attaining such properties in diamond, a key emerging material for quantum information technologies.
ISSN:2041-1723