Implementing deep learning-based disruption prediction in a drifting data environment of new tokamak: HL-3
A deep learning-based disruption prediction algorithm has been implemented on a new tokamak, HL-3. An Area Under receiver-operator characteristic Curve of 0.940 has been realized offline over a test campaign involving 72 disruptive and 240 non-disruptive shots, despite the limited training data avai...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2025-01-01
|
Series: | Nuclear Fusion |
Subjects: | |
Online Access: | https://doi.org/10.1088/1741-4326/ada396 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|