Utility of Domain Adaptation for Biomass Yield Forecasting
Previous work used machine learning (ML) to estimate past and current alfalfa yields and showed that domain adaptation (DA) with data synthesis shows promise in classifying yields as high, medium, or low. The current work uses similar techniques to forecast future alfalfa yields. A novel technique i...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | AgriEngineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2624-7402/7/7/237 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Previous work used machine learning (ML) to estimate past and current alfalfa yields and showed that domain adaptation (DA) with data synthesis shows promise in classifying yields as high, medium, or low. The current work uses similar techniques to forecast future alfalfa yields. A novel technique is proposed for forecasting alfalfa time series data that exploits stationarity and predicts differences in yields rather than the yields themselves. This forecasting technique generally provides more accurate forecasts than the established ARIMA family of forecasters for both univariate and multivariate time series. Furthermore, this ML-based technique is potentially easier to use than the ARIMA family of models. Also, previous work is extended by showing that DA with data synthesis also works well for predicting continuous values, not just for classification. The novel scale-invariant tabular synthesizer (SITS) is proposed, and it is competitive with or superior to other established synthesizers in producing data that trains strong models. This synthesis algorithm leads to R scores over 100% higher than an established synthesizer in this domain, while ML-based forecasters beat the ARIMA family with symmetric mean absolute percent error (sMAPE) scores as low as 12.81%. Finally, ML-based forecasting is combined with DA (ForDA) to create a novel pipeline that improves forecast accuracy with sMAPE scores as low as 9.81%. As alfalfa is crucial to the global food supply, and as climate change creates challenges with managing alfalfa, this work hopes to help address those challenges and contribute to the field of ML. |
|---|---|
| ISSN: | 2624-7402 |