A Nonstandard Fitted Operator Method for Singularly Perturbed Parabolic Reaction-Diffusion Problems with a Large Time Delay
In this paper, we design and investigate a higher order ε-uniformly convergent method to solve singularly perturbed parabolic reaction-diffusion problems with a large time delay. We use the Crank–Nicolson method for the time derivative, while the spatial derivative is discretized using a nonstandard...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2022-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Online Access: | http://dx.doi.org/10.1155/2022/5625049 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we design and investigate a higher order ε-uniformly convergent method to solve singularly perturbed parabolic reaction-diffusion problems with a large time delay. We use the Crank–Nicolson method for the time derivative, while the spatial derivative is discretized using a nonstandard finite difference approach on a uniform mesh. Furthermore, to improve the order of convergence, we used the Richardson extrapolation technique. The designed scheme converges independent of the perturbation parameter (ε-uniformly convergent) and also achieves fourth-order convergent in both time and spatial variables. Two model examples are considered to demonstrate the applicability of the suggested method. The proposed method produces better accuracy and a higher rate of convergence than some methods that appear in the literature. |
|---|---|
| ISSN: | 1687-0425 |