Analysis of the Influence of Patch Antenna Shapes for Wireless Passive Temperature Sensor Applications
Wireless passive temperature sensors are essential in environments where wired connections are impractical, such as rotating machinery and harsh conditions. A key advantage of these sensors is their ability to operate without a local power source. This study employs the antenna backscattering method...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/6/3136 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Wireless passive temperature sensors are essential in environments where wired connections are impractical, such as rotating machinery and harsh conditions. A key advantage of these sensors is their ability to operate without a local power source. This study employs the antenna backscattering method, which relies on the wireless interaction between the interrogator antenna and the sensor antenna’s resonant frequency, implemented in the far-field region to support long communication distances. To evaluate the impact of antenna shape on sensor performance, three microstrip patch antenna shapes—rectangular, circular, and equilateral triangular—were designed to operate in the fundamental mode at 2.4 GHz. These designs were simulated using HFSS in Ansys Electromagnetic Suite<sup>®</sup> 2023 R1 (Ansys Inc., Canonsburg, PA, USA), fabricated on alumina substrates, and assessed for performance metrics, including communication distance and sensitivity. Results indicated that the equilateral triangular patch outperformed the others, achieving a maximum communication distance of 16.5 cm, a sensitivity of 0.129 MHz/°C over a temperature range of 25 °C to 500 °C, and a simulated gain of 5.84 dBi. These findings underscore the importance of antenna shape selection and optimization for robust, wireless temperature sensing in demanding environments. |
|---|---|
| ISSN: | 2076-3417 |