Sulfur-doping tunes p-d orbital coupling over asymmetric Zn-Sn dual-atom for boosting CO2 electroreduction to formate
Abstract The interaction of p-d orbitals at bimetallic sites plays a crucial role in determining the catalytic reactivity, which facilitates the modulation of charges and enhances the efficiency of CO2 electroreduction process. Here, we show a ligand co-etching approach to create asymmetric Zn-Sn du...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-57573-4 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The interaction of p-d orbitals at bimetallic sites plays a crucial role in determining the catalytic reactivity, which facilitates the modulation of charges and enhances the efficiency of CO2 electroreduction process. Here, we show a ligand co-etching approach to create asymmetric Zn-Sn dual-atom sites (DASs) within metal-organic framework (MOF)-derived yolk-shell carbon frameworks (named Zn1Sn1/SNC). The DASs comprise one Sn center (p-block) partially doped with sulfur and one Zn center (d-block) with N coordination, facilitating the coupling of p-d orbitals between the Zn-Sn dimer. The N-Zn-Sn-S/N arrangement displays an asymmetric distribution of charges and atoms, leading to a stable adsorption configuration of HCOO* intermediates. In H-type cell, Zn1Sn1/SNC exhibits an impressive formate Faraday efficiency of 94.6% at -0.84 V. In flow cell, the asymmetric electronic architecture of Zn1Sn1/SNC facilitates high accessibility, leading to a high current density of -315.2 mA cm-2 at -0.90 V. Theoretical calculations show the asymmetric sites in Zn1Sn1/SNC with ideal adsorption affinity lower the CO2 reduction barrier, thus improve the overall efficiency of CO2 reduction. |
|---|---|
| ISSN: | 2041-1723 |