Integrated approach to explore Anemonia viridis regeneration under a climate change scenario

Abstract This study investigates the mechanisms of regeneration in Anemonia viridis under natural conditions and thermal stress, addressing the question: “Does an anthozoan subjected to thermal stress regenerate similarly to one experiencing only a wound?“. Oxidative stress markers (protein carbonyl...

Full description

Saved in:
Bibliographic Details
Main Authors: Claudia La Corte, Stephanie Barnay-Verdier, Paola Furla, Luca Bisanti, Mariano Dara, Gabriele Rizzuto, Salvatrice Vizzini, Maria Giovanna Parisi, Matteo Cammarata
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-11041-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study investigates the mechanisms of regeneration in Anemonia viridis under natural conditions and thermal stress, addressing the question: “Does an anthozoan subjected to thermal stress regenerate similarly to one experiencing only a wound?“. Oxidative stress markers (protein carbonylation, total antioxidant capacity) and symbiont photosynthetic efficiency (via Pulse Amplitude Modulation) were analyzed. Key proteins related to inflammation and tissue regeneration, including toll-like receptor, nuclear factor kappa B, heat shock proteins, and interleukin-1β, were examined using blotting techniques. Observations revealed higher antioxidant capacity at 20 °C than 27 °C after 6- and 24-hours post-injury. Thermal stress disrupted redox balance, as indicated by decreased symbiont photosynthetic efficiency. Protein expression analyses (proliferating cell nuclear antigen, heat shock protein 90, collagen Type XXIV α1) showed activation of compensatory mechanisms, but oxidative stress biomarkers highlighted significant cellular stress. These results suggest that elevated temperatures may impair regeneration in Anemonia viridis, highlighting a potential vulnerability of anthozoans to thermal stress associated with climate change.
ISSN:2045-2322