Deep learning application for stellar parameter determination: III-denoising procedure

In this third article in a series, we investigate the need of spectra denoising for the derivation of stellar parameters. We have used two distinct datasets for this work. The first one contains spectra in the range of 4,450–5,400 Å at a resolution of 42,000, and the second in the range of 8,400–8,8...

Full description

Saved in:
Bibliographic Details
Main Authors: Gebran Marwan, Bentley Ian, Brienza Rose, Paletou Frédéric
Format: Article
Language:English
Published: De Gruyter 2025-01-01
Series:Open Astronomy
Subjects:
Online Access:https://doi.org/10.1515/astro-2024-0010
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593698955722752
author Gebran Marwan
Bentley Ian
Brienza Rose
Paletou Frédéric
author_facet Gebran Marwan
Bentley Ian
Brienza Rose
Paletou Frédéric
author_sort Gebran Marwan
collection DOAJ
description In this third article in a series, we investigate the need of spectra denoising for the derivation of stellar parameters. We have used two distinct datasets for this work. The first one contains spectra in the range of 4,450–5,400 Å at a resolution of 42,000, and the second in the range of 8,400–8,800 Å at a resolution of 11,500. We constructed two denoising techniques, an autoencoder, and a principal component analysis. Using random Gaussian noise added to synthetic spectra, we have trained a neural network to derive the stellar parameters Teff{T}_{{\rm{eff}}}, logg\log g, vesini{v}_{{\rm{e}}}\sin i, ξt{\xi }_{{\rm{t}}}, and [M/H] of the denoised spectra. We find that, independently of the denoising technique, the accuracy values of stellar parameters do not improve once we denoise the synthetic spectra. This is true with and without applying data augmentation to the stellar parameters neural network.
format Article
id doaj-art-b9e840e09a104dc8a0d7b2580dea6332
institution Kabale University
issn 2543-6376
language English
publishDate 2025-01-01
publisher De Gruyter
record_format Article
series Open Astronomy
spelling doaj-art-b9e840e09a104dc8a0d7b2580dea63322025-01-20T11:08:07ZengDe GruyterOpen Astronomy2543-63762025-01-0134164565210.1515/astro-2024-0010Deep learning application for stellar parameter determination: III-denoising procedureGebran Marwan0Bentley Ian1Brienza Rose2Paletou Frédéric3Department of Chemistry and Physics, Saint Mary’s College, Notre Dame, IN 46556, United StatesDepartment of Physics, FLorida Polytechnic University, Lakeland, FL, 33805, United StatesDepartment of Chemistry and Physics, Saint Mary’s College, Notre Dame, IN 46556, United StatesUniversite de Toulouse, Observatoire Midi-Pyrenes, Irap, Cnrs, Cnes, 14 av. E. Belin, F-31400 Toulouse, FranceIn this third article in a series, we investigate the need of spectra denoising for the derivation of stellar parameters. We have used two distinct datasets for this work. The first one contains spectra in the range of 4,450–5,400 Å at a resolution of 42,000, and the second in the range of 8,400–8,800 Å at a resolution of 11,500. We constructed two denoising techniques, an autoencoder, and a principal component analysis. Using random Gaussian noise added to synthetic spectra, we have trained a neural network to derive the stellar parameters Teff{T}_{{\rm{eff}}}, logg\log g, vesini{v}_{{\rm{e}}}\sin i, ξt{\xi }_{{\rm{t}}}, and [M/H] of the denoised spectra. We find that, independently of the denoising technique, the accuracy values of stellar parameters do not improve once we denoise the synthetic spectra. This is true with and without applying data augmentation to the stellar parameters neural network.https://doi.org/10.1515/astro-2024-0010data analysisstatisticaldeep learningautoencoderstechniques: spectroscopicnoisestars: fundamental parameters
spellingShingle Gebran Marwan
Bentley Ian
Brienza Rose
Paletou Frédéric
Deep learning application for stellar parameter determination: III-denoising procedure
Open Astronomy
data analysis
statistical
deep learning
autoencoders
techniques: spectroscopic
noise
stars: fundamental parameters
title Deep learning application for stellar parameter determination: III-denoising procedure
title_full Deep learning application for stellar parameter determination: III-denoising procedure
title_fullStr Deep learning application for stellar parameter determination: III-denoising procedure
title_full_unstemmed Deep learning application for stellar parameter determination: III-denoising procedure
title_short Deep learning application for stellar parameter determination: III-denoising procedure
title_sort deep learning application for stellar parameter determination iii denoising procedure
topic data analysis
statistical
deep learning
autoencoders
techniques: spectroscopic
noise
stars: fundamental parameters
url https://doi.org/10.1515/astro-2024-0010
work_keys_str_mv AT gebranmarwan deeplearningapplicationforstellarparameterdeterminationiiidenoisingprocedure
AT bentleyian deeplearningapplicationforstellarparameterdeterminationiiidenoisingprocedure
AT brienzarose deeplearningapplicationforstellarparameterdeterminationiiidenoisingprocedure
AT paletoufrederic deeplearningapplicationforstellarparameterdeterminationiiidenoisingprocedure