SFSCDNet: A Deep Learning Model With Spatial Flow-Based Semantic Change Detection From Bi-Temporal Satellite Images
Semantic change detection in remote sensing imagery plays a pivotal role in urban planning, environmental monitoring, and disaster assessment applications. Existing deep learning-based methods, particularly those relying on triple-branch architectures, often struggle to accurately localize and predi...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10807279/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|