Benchmarking cell type annotation methods for 10x Xenium spatial transcriptomics data
Abstract Background Imaging-based spatial transcriptomics technologies allow us to explore spatial gene expression profiles at the cellular level. Cell type annotation of imaging-based spatial data is challenging due to the small gene panel, but it is a crucial step for downstream analyses. Many goo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2025-01-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12859-025-06044-0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Background Imaging-based spatial transcriptomics technologies allow us to explore spatial gene expression profiles at the cellular level. Cell type annotation of imaging-based spatial data is challenging due to the small gene panel, but it is a crucial step for downstream analyses. Many good reference-based cell type annotation tools have been developed for single-cell RNA sequencing and sequencing-based spatial transcriptomics data. However, the performance of the reference-based cell type annotation tools on imaging-based spatial transcriptomics data has not been well studied yet. Results We compared performance of five reference-based methods (SingleR, Azimuth, RCTD, scPred and scmapCell) with the marker-gene-based manual annotation method on an imaging-based Xenium data of human breast cancer. A practical workflow has been demonstrated for preparing a high-quality single-cell RNA reference, evaluating the accuracy, and estimating the running time for reference-based cell type annotation tools. Conclusions SingleR was the best performing reference-based cell type annotation tool for the Xenium platform, being fast, accurate and easy to use, with results closely matching those of manual annotation. |
---|---|
ISSN: | 1471-2105 |