Hyperparameter Optimization in Generative Adversarial Networks (GANs) Using Gaussian AHP
This study explores optimizing hyperparameters in Generative Adversarial Networks (GANs) using the Gaussian Analytical Hierarchy Process (Gaussian AHP). By integrating machine learning techniques and multi-criteria decision methods, the aim is to enhance the performance and efficiency of GAN models....
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10804166/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|