Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone Nonlinearities

The trajectory tracking for a class of uncertain nonlinear systems in which the number of possible states is equal to the number of inputs and each input is preceded by an unknown symmetric deadzone is considered. The unknown dynamics is identified by means of a continuous time recurrent neural netw...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Humberto Pérez-Cruz, José de Jesús Rubio, Rodrigo Encinas, Ricardo Balcazar
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/951983
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560274331140096
author J. Humberto Pérez-Cruz
José de Jesús Rubio
Rodrigo Encinas
Ricardo Balcazar
author_facet J. Humberto Pérez-Cruz
José de Jesús Rubio
Rodrigo Encinas
Ricardo Balcazar
author_sort J. Humberto Pérez-Cruz
collection DOAJ
description The trajectory tracking for a class of uncertain nonlinear systems in which the number of possible states is equal to the number of inputs and each input is preceded by an unknown symmetric deadzone is considered. The unknown dynamics is identified by means of a continuous time recurrent neural network in which the control singularity is conveniently avoided by guaranteeing the invertibility of the coupling matrix. Given this neural network-based mathematical model of the uncertain system, a singularity-free feedback linearization control law is developed in order to compel the system state to follow a reference trajectory. By means of Lyapunov-like analysis, the exponential convergence of the tracking error to a bounded zone can be proven. Likewise, the boundedness of all closed-loop signals can be guaranteed.
format Article
id doaj-art-b66a5817bb874263b548c1e93eeb9ffb
institution Kabale University
issn 2356-6140
1537-744X
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series The Scientific World Journal
spelling doaj-art-b66a5817bb874263b548c1e93eeb9ffb2025-02-03T01:28:04ZengWileyThe Scientific World Journal2356-61401537-744X2014-01-01201410.1155/2014/951983951983Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone NonlinearitiesJ. Humberto Pérez-Cruz0José de Jesús Rubio1Rodrigo Encinas2Ricardo Balcazar3Sección de Estudios de Posgrado e Investigación, ESIME UA-IPN, Avenida de las Granjas, No. 682, Colonia Santa Catarina, México, DF 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME UA-IPN, Avenida de las Granjas, No. 682, Colonia Santa Catarina, México, DF 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME UA-IPN, Avenida de las Granjas, No. 682, Colonia Santa Catarina, México, DF 02250, MexicoSección de Estudios de Posgrado e Investigación, ESIME UA-IPN, Avenida de las Granjas, No. 682, Colonia Santa Catarina, México, DF 02250, MexicoThe trajectory tracking for a class of uncertain nonlinear systems in which the number of possible states is equal to the number of inputs and each input is preceded by an unknown symmetric deadzone is considered. The unknown dynamics is identified by means of a continuous time recurrent neural network in which the control singularity is conveniently avoided by guaranteeing the invertibility of the coupling matrix. Given this neural network-based mathematical model of the uncertain system, a singularity-free feedback linearization control law is developed in order to compel the system state to follow a reference trajectory. By means of Lyapunov-like analysis, the exponential convergence of the tracking error to a bounded zone can be proven. Likewise, the boundedness of all closed-loop signals can be guaranteed.http://dx.doi.org/10.1155/2014/951983
spellingShingle J. Humberto Pérez-Cruz
José de Jesús Rubio
Rodrigo Encinas
Ricardo Balcazar
Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone Nonlinearities
The Scientific World Journal
title Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone Nonlinearities
title_full Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone Nonlinearities
title_fullStr Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone Nonlinearities
title_full_unstemmed Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone Nonlinearities
title_short Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone Nonlinearities
title_sort singularity free neural control for the exponential trajectory tracking in multiple input uncertain systems with unknown deadzone nonlinearities
url http://dx.doi.org/10.1155/2014/951983
work_keys_str_mv AT jhumbertoperezcruz singularityfreeneuralcontrolfortheexponentialtrajectorytrackinginmultipleinputuncertainsystemswithunknowndeadzonenonlinearities
AT josedejesusrubio singularityfreeneuralcontrolfortheexponentialtrajectorytrackinginmultipleinputuncertainsystemswithunknowndeadzonenonlinearities
AT rodrigoencinas singularityfreeneuralcontrolfortheexponentialtrajectorytrackinginmultipleinputuncertainsystemswithunknowndeadzonenonlinearities
AT ricardobalcazar singularityfreeneuralcontrolfortheexponentialtrajectorytrackinginmultipleinputuncertainsystemswithunknowndeadzonenonlinearities