Major Histocompatibility Complex Genes as Therapeutic Opportunity for Immune Cold Molecular Cancer Subtypes

Current immunotherapies are effective only in a subset of patients, likely due to several factors including defects in tumor cell antigen presentation, decreased response to immune effectors, and molecular heterogeneity of cancers. Recent molecular classifications enable the categorization of many t...

Full description

Saved in:
Bibliographic Details
Main Authors: Paweł Karpiński, Łukasz Łaczmański, Maria M. Sąsiadek
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Immunology Research
Online Access:http://dx.doi.org/10.1155/2020/8758090
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current immunotherapies are effective only in a subset of patients, likely due to several factors including defects in tumor cell antigen presentation, decreased response to immune effectors, and molecular heterogeneity of cancers. Recent molecular classifications enable the categorization of many tumor types. However, deregulation of major histocompatibility complex (MHC) gene expression is poorly characterized in the context of molecular cancer subtypes. To suppress the confounding effect of immune infiltrates on expression patterns of immunoregulators, we identified and removed genes with strong correlation to estimated immune compartment levels in each tumor type. Next, we reanalyzed a total of 13 TCGA cancer types encompassing 5651 tumors and 485 normal adjacent tissues by performing unsupervised clustering of 14 MHC genes. Subsequently, resultant clusters were statistically compared in terms of expression of other immune-related genes. Three MHC expression clusters were discovered by unsupervised clustering. We identified concordantly decreased expression of MHC genes (MHC-low) in 26 out of 55 molecular subtypes. Consequently, our study underlines the urgent need for designing strategies to enhance tumor MHC expression that could improve immune cold tumor rejection by cytotoxic T lymphocytes.
ISSN:2314-8861
2314-7156