Due-Window Assignment and Resource Allocation Scheduling with Truncated Learning Effect and Position-Dependent Weights
This paper studies single-machine due-window assignment scheduling problems with truncated learning effect and resource allocation simultaneously. Linear and convex resource allocation functions under common due-window (CONW) assignment are considered. The goal is to find the optimal due-window star...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2020/9260479 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies single-machine due-window assignment scheduling problems with truncated learning effect and resource allocation simultaneously. Linear and convex resource allocation functions under common due-window (CONW) assignment are considered. The goal is to find the optimal due-window starting (finishing) time, resource allocations and job sequence that minimize a weighted sum function of earliness and tardiness, due window starting time, due window size, and total resource consumption cost, where the weight is position-dependent weight. Optimality properties and polynomial time algorithms are proposed to solve these problems. |
---|---|
ISSN: | 1026-0226 1607-887X |