Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations

Consider the second-order linear delay differential equation x′′(t)+p(t)x(τ(t))=0, t≥t0, where p∈C([t0,∞),ℝ+), τ∈C([t0,∞),ℝ), τ(t) is nondecreasing, τ(t)≤t for t≥t0 and limt→∞τ(t)=∞, the (discrete analogue) second-order difference equation Δ2x(n)+p(n)x(τ(n))=0, where Δx(n)=x(n+1)−x(n), Δ2=Δ∘Δ, p:ℕ→ℝ...

Full description

Saved in:
Bibliographic Details
Main Authors: L. K. Kikina, I. P. Stavroulakis
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2010/598068
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832555947039391744
author L. K. Kikina
I. P. Stavroulakis
author_facet L. K. Kikina
I. P. Stavroulakis
author_sort L. K. Kikina
collection DOAJ
description Consider the second-order linear delay differential equation x′′(t)+p(t)x(τ(t))=0, t≥t0, where p∈C([t0,∞),ℝ+), τ∈C([t0,∞),ℝ), τ(t) is nondecreasing, τ(t)≤t for t≥t0 and limt→∞τ(t)=∞, the (discrete analogue) second-order difference equation Δ2x(n)+p(n)x(τ(n))=0, where Δx(n)=x(n+1)−x(n), Δ2=Δ∘Δ, p:ℕ→ℝ+, τ:ℕ→ℕ, τ(n)≤n−1, and limn→∞τ(n)=+∞, and the second-order functional equation x(g(t))=P(t)x(t)+Q(t)x(g2(t)), t≥t0, where the functions P, Q∈C([t0,∞),ℝ+), g∈C([t0,∞),ℝ), g(t)≢t for t≥t0, limt→∞g(t)=∞, and g2 denotes the 2th iterate of the function g, that is, g0(t)=t, g2(t)=g(g(t)), t≥t0. The most interesting oscillation criteria for the second-order linear delay differential equation, the second-order difference equation and the second-order functional equation, especially in the case where liminft→∞∫τ(t)tτ(s)p(s)ds≤1/e and limsupt→∞∫τ(t)tτ(s)p(s)ds<1 for the second-order linear delay differential equation, and 0<liminft→∞{Q(t)P(g(t))}≤1/4 and limsupt→∞{Q(t)P(g(t))}<1, for the second-order functional equation, are presented.
format Article
id doaj-art-b412fff662aa4338975b376e93840484
institution Kabale University
issn 1687-9643
1687-9651
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series International Journal of Differential Equations
spelling doaj-art-b412fff662aa4338975b376e938404842025-02-03T05:46:50ZengWileyInternational Journal of Differential Equations1687-96431687-96512010-01-01201010.1155/2010/598068598068Oscillation Criteria for Second-Order Delay, Difference, and Functional EquationsL. K. Kikina0I. P. Stavroulakis1Department of Mathematics, University of Gjirokastra, 6002 Gjirokastra, AlbaniaDepartment of Mathematics, University of Ioannina, 451 10 Ioannina, GreeceConsider the second-order linear delay differential equation x′′(t)+p(t)x(τ(t))=0, t≥t0, where p∈C([t0,∞),ℝ+), τ∈C([t0,∞),ℝ), τ(t) is nondecreasing, τ(t)≤t for t≥t0 and limt→∞τ(t)=∞, the (discrete analogue) second-order difference equation Δ2x(n)+p(n)x(τ(n))=0, where Δx(n)=x(n+1)−x(n), Δ2=Δ∘Δ, p:ℕ→ℝ+, τ:ℕ→ℕ, τ(n)≤n−1, and limn→∞τ(n)=+∞, and the second-order functional equation x(g(t))=P(t)x(t)+Q(t)x(g2(t)), t≥t0, where the functions P, Q∈C([t0,∞),ℝ+), g∈C([t0,∞),ℝ), g(t)≢t for t≥t0, limt→∞g(t)=∞, and g2 denotes the 2th iterate of the function g, that is, g0(t)=t, g2(t)=g(g(t)), t≥t0. The most interesting oscillation criteria for the second-order linear delay differential equation, the second-order difference equation and the second-order functional equation, especially in the case where liminft→∞∫τ(t)tτ(s)p(s)ds≤1/e and limsupt→∞∫τ(t)tτ(s)p(s)ds<1 for the second-order linear delay differential equation, and 0<liminft→∞{Q(t)P(g(t))}≤1/4 and limsupt→∞{Q(t)P(g(t))}<1, for the second-order functional equation, are presented.http://dx.doi.org/10.1155/2010/598068
spellingShingle L. K. Kikina
I. P. Stavroulakis
Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations
International Journal of Differential Equations
title Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations
title_full Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations
title_fullStr Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations
title_full_unstemmed Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations
title_short Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations
title_sort oscillation criteria for second order delay difference and functional equations
url http://dx.doi.org/10.1155/2010/598068
work_keys_str_mv AT lkkikina oscillationcriteriaforsecondorderdelaydifferenceandfunctionalequations
AT ipstavroulakis oscillationcriteriaforsecondorderdelaydifferenceandfunctionalequations