Understanding phase transitions of α-quartz under dynamic compression conditions by machine-learning driven atomistic simulations

Abstract Characteristic shock effects in quartz serve as a key indicator of historic impacts at geologic sites. Despite this geologic significance, atomistic details of structural transformations of quartz under high pressure and shock compression remain poorly understood. This ambiguity is evidence...

Full description

Saved in:
Bibliographic Details
Main Authors: Linus C. Erhard, Christoph Otzen, Jochen Rohrer, Clemens Prescher, Karsten Albe
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01542-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Characteristic shock effects in quartz serve as a key indicator of historic impacts at geologic sites. Despite this geologic significance, atomistic details of structural transformations of quartz under high pressure and shock compression remain poorly understood. This ambiguity is evidenced by conflicting experimental observations of both amorphization and transitions to crystalline polymorphs. Utilizing a newly developed machine-learning interatomic potential, we examine the response of α-quartz to shock compression with a peak pressure of 56 GPa over nanosecond timescales. We observe initial amorphization of quartz before crystallization into a d-NiAs-structured silica phase with disorder on the silicon sublattice, accompanied by the formation of domains with partial order of silicon. Investigating a variety of strain conditions of quartz enables us to identify non-hydrostatic stress and strain states that allow for direct diffusionless transformation to rosiaite-structured silica.
ISSN:2057-3960