Dual-Branch Cross-Fusion Normalizing Flow for RGB-D Track Anomaly Detection
With the ease of acquiring RGB-D images from line-scan 3D cameras and the development of computer vision, anomaly detection is now widely applied to railway inspection. As 2D anomaly detection is susceptible to capturing condition, a combination of depth maps is now being explored in industrial insp...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/8/2631 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the ease of acquiring RGB-D images from line-scan 3D cameras and the development of computer vision, anomaly detection is now widely applied to railway inspection. As 2D anomaly detection is susceptible to capturing condition, a combination of depth maps is now being explored in industrial inspection to reduce these interferences. In this case, this paper proposes a novel approach for RGB-D anomaly detection called Dual-Branch Cross-Fusion Normalizing Flow (DCNF). In this work, we aim to exploit the fusion strategy for dual-branch normalizing flow with multi-modal inputs to be applied in the field of track detection. On the one hand, we introduce the mutual perception module to acquire cross-complementary prior knowledge in the early stage. On the other hand, we exploit the effectiveness of the fusion flow to fuse the dual-branch of RGB-D inputs. We experiment on the real-world Track Anomaly (TA) dataset. The performance evaluation of DCNF on TA dataset achieves an impressive AUROC score of 98.49%, which is 3.74% higher than the second-best method. |
|---|---|
| ISSN: | 1424-8220 |